Abstract

Ageing is associated with various ailments including Alzheimer ’s disease (AD), which is a progressive form of dementia. AD symptoms develop over a period of years and, unfortunately, there is no cure. Existing AD treatments can only slow down the progression of symptoms and thus it is critical to diagnose the disease at an early stage. To help improve the early diagnosis of AD, a deep learning-based classification model with an embedded feature selection approach was used to classify AD patients. An AD DNA methylation data set (64 records with 34 cases and 34 controls) from the GEO omnibus database was used for the analysis. Before selecting the relevant features, the data were preprocessed by performing quality control, normalization and downstream analysis. As the number of associated CpG sites was huge, four embedded-based feature selection models were compared and the best method was used for the proposed classification model. An Enhanced Deep Recurrent Neural Network (EDRNN) was implemented and compared to other existing classification models, including a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), and a Deep Recurrent Neural Network (DRNN). The results showed a significant improvement in the classification accuracy of the proposed model as compared to the other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.