Abstract

In low-power wireless neural recording tasks, signals must be compressed before transmission to extend battery life. Recently, compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, a deep learning framework of quantized CS, termed BW-NQ-DNN, is proposed, which consists of a binary measurement matrix, a non-uniform quantizer, and a non-iterative recovery solver. By training the BW-NQ-DNN, the three parts are jointly optimized. Experimental results on synthetic and real datasets reveal that BW-NQ-DNN not only drastically reduce the transmission bits but also outperforms the state-of-the-art CS-based methods. On the challenging high compression ratio task, the proposed approach still achieves high recovery performance and spike classification accuracy. This framework is of great values to wireless neural recoding devices, and many variants can be straightforwardly derived for low-power wireless telemonitoring applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.