Abstract

The International Statistical Classification of Diseases and Related Health Problems (ICD) is one of the widely used classification system for diagnoses and procedures to assign diagnosis codes to Electronic Health Record (EHR) associated with a patient's stay. The aim of this paper is to propose an automated coding system to assist physicians in the assignment of ICD codes to EHR. For this purpose, we created a pipeline of Natural Language Processing (NLP) and Deep Learning (DL) models able to extract the useful information from French medical texts and to perform classification. After the evaluation phase, our approach was able to predict 346 diagnosis codes from heterogeneous medical units with an accuracy average of 83%. Our results were finally validated by physicians of the Medical Information Department (MID) in charge of coding hospital stays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.