Abstract
Degradation modeling and prognostics serve as the basis for system health management. Recently, various sensors provide plentiful monitoring data that can reflect the system status. A multitude of feature fusion techniques based on multisensor data have been proposed to generate a composite health index (HI) for prognostics, which can represent the underlying degradation mechanism. Most existing methods have used linear fusion models and neglected the practical requirements for HI construction, which are insufficient to reveal the nonlinear relations among features and difficult to obtain accurate HIs for complicated systems. This study proposes a novel feature fusion-based HI construction method with deep learning and multiobjective optimization. Multiple degradation features are fused by a deep neutral network (DNN). Several desired properties that the HIs should have for prognostics are adopted to formulate the objective functions of DNN training. To balance the spatial complexity and performance of the fusion model, a multiobjective optimization model is generated for training the DNN. Then, a generalized nonlinear Wiener process model is used to predict the remaining useful life with the resulted HIs. Finally, two cases are analyzed to illustrate the effectiveness and robustness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.