Abstract

Orchard machinery autonomous navigation is helpful for improving the efficiency of fruit production and reducing labor costs. Path planning is one of the core technologies of autonomous navigation for orchard machinery. As normally planted in straight and parallel rows, fruit trees are natural landmarks that can provide suitable cues for orchard intelligent machinery. This paper presents a novel method to realize path planning based on computer vision technologies. We combine deep learning and the least-square (DL-LS) algorithm to carry out a new navigation line extraction algorithm for orchard scenarios. First, a large number of actual orchard images are collected and processed for training the YOLO V3 model. After the training, the mean average precision (MAP) of the model for trunk and tree detection can reach 92.11%. Secondly, the reference point coordinates of the fruit trees are calculated with the coordinates of the bounding box of trunks. Thirdly, the reference lines of fruit trees growing on both sides are fitted by the least-square method and the navigation line for the orchard machinery is determined by the two reference lines. Experimental results show that the trained YOLO V3 network can identify the tree trunk and the fruit tree accurately and that the new navigation line of fruit tree rows can be extracted effectively. The accuracy of orchard centerline extraction is 90.00%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.