Abstract

To evaluate if an automatic classification of rheumatoid arthritis (RA) metacarpophalangeal joint conditions in ultrasound images is feasible by deep learning (DL) method, to provide a more objective, automated, and fast way of RA diagnosis in clinical setting. DenseNet-based DL model was used and both training and testing are implemented in TensorFlow 1.13.1 with Keras DL libraries. The area under curve (AUC), accuracy, sensitivity, and specificity values with 95% CIs were reported. The statistical analysis was performed by using scikit-learn libraries in Python 3.7. A total of 1337 RA ultrasound images were acquired from 208 patients, the number of images is 313, 657, 178, and 189 in OESS Grade L0, L1, L2, and L3, respectively. In Classification Scenario 1SP-no versus SP-yes, three experiments with region of interest of size 192 × 448 (Group 1), 96 × 224 (Group 2), and 96 × 224 stacked with pre-segmented annotated mask of SP area (Group 3) as input achieve an AUC of 0.863 (95% CI: 0.809, 0.917), 0.861 (95% CI: 0.805, 0.916), and 0.886 (95% CI: 0.836, 0.936), respectively. In Classification Scenario 2 Healthy versus Diseased, experiments in Group 1, Group 2 and Group 3 achieve an AUC of 0.848 (95% CI: 0.799, 0.896), 0.864 (95% CI: 0.819, 0.909), and 0.916 (95% CI: 0.883, 0.952), respectively. We combined DenseNet model with ultrasound images for RA condition assessment. The feasibility of using DL to create an automatic RA condition classification system was also demonstrated. The proposed method can be an alternative to the initial screening of RA patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.