Abstract

Among the main approaches for predicting the spatial positions of eluates in comprehensive two-dimensional gas chromatography, the still under-explored computational models based on deep learning algorithms emerge as robust and reliable options due to their high adaptability to the structure and complexity of the data. In this work, an open-source program based on deep neural networks was developed to optimize chromatographic methods and simulate operating conditions outside the laboratory. The deep neural networks models were fit to convenient experimental predictors, resulting in scaled losses (mean squared error) equivalent to 0.006 (relative average deviation=8.56%, R2 =0.9202) and 0.014 (relative average deviation=1.67%, R2 =0.8009) in the prediction of the first- and second-dimension retention times, respectively. Good compliance was observed for the main chemical classes, such as environmental contaminants: volatile, semivolatile organic compounds, and pesticides; biochemistry molecules: amino acids and lipids; pharmaceutical industry and personal care products and residues: drugs and metabolites; among others. On the other hand, there is a need for continuous database updates to predict retention times of less common compounds accurately. Thus, forming a collaborative database is proposed, gathering voluntary findings from other users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.