Abstract
Unmanned aerial vehicles (UAVs), relying on wireless communication, are inevitably influenced by the complex electromagnetic environment, attributed to the development of wireless communication technology. The modulation information of signals can assist in identifying device information and interference in the environment, which is significant for UAV communication environment monitoring. Therefore, in scenarios involving the communication of UAVs, it is necessary to find out how to perform the spectrum monitoring method to obtain the modulation information. Most existing methods are unsuitable for scenarios where multiple signals appear in the same spectrum sequence or do not use an end-to-end structure. Firstly, we established a spectrum dataset to simulate the UAV communication environment and developed a label method. Then, detection networks were employed to extract the presence and location information of signals in the spectrum. Finally, decision-level fusion was used to combine the output results of multiple nodes. Five modulation types, including ASK, FSK, 16QAM, DSB-SC, and SSB, were used to simulate different signal sources in the communication environment. Accuracy, recall, and F1 score were used as evaluation metrics. The networks were tested at different signal-to-noise ratios (SNRs). Among the different modulation types, FSK exhibits the most stable recognition performance across different models. The proposed method is of great significance for wireless radio spectrum monitoring in complex electromagnetic environments and is adaptable to scenarios where multiple receivers are used in vast terrains, providing a deep learning-based approach to radio monitoring solutions for UAV communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.