Abstract
<span lang="EN-US">Tomato is one of many horticulture crops in Indonesia which plays a vital role in supplying public food needs. However, tomato is a very susceptible plant to pests and diseases caused by bacteria and fungus. The infected diseases should be isolated as soon as it was detected. Therefore, developing a reliable and fast system is essential for controlling tomato pests and diseases. The deep learning-based application can help to speed up the identification of tomato disease as it can perform direct identification from the image. In this research, EfficientNetB0 was implemented to perform multi-class tomato plant disease classification. The model was then deployed to an android-based application using machine learning (ML) kit library. The proposed system obtained satisfactory results, reaching an average accuracy of 91.4%.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.