Abstract
Given that the current microgrid incorporates highly connected distributed energy sources, the conventional model control methods do not suffice to support complex and ever-changing operating scenarios. This paper proposes a deep learning-based energy optimization method for microgrid energy management in the new power system scenarios. This article constructs a microgrid cloud edge collaboration architecture, which collects interactive network status data through terminal devices and network edge sides. A microgrid energy management model is constructed based on Bi-LSTM attention in the network cloud. And the model is sunk to provide real-time and efficient comprehensive load and power generation prediction output optimal scheduling decisions at the edge of the network, achieving collaborative control of microgrid light load storage. The simulation based on the actual available microgrid data shows that the proposed Bi-LSTM attention energy management model can achieve rapid analysis and optimize decision-making within 7.3 seconds for complex microgrid operation scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Gaming and Computer-Mediated Simulations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.