Abstract

We apply the Empirical Mode Decomposition (EMD) algorithm and the Time Convolutional Network (TCN) structure, predicated on Convolutional Neural Networks, to successfully enable feature extraction within high-precision optical time-frequency signals, and provide effective identification and alerts for abnormal link states. Experimental validation confirms that the proposed method not only delivers an efficacy on par with traditional manual techniques, but also excels in swiftly identifying anomalies that typically elude conventional approaches. This investigation furnishes novel theoretical backing and forecasting tools for high-precision optical transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.