Abstract
A population explosion has resulted in garbage generation on a large scale. The process of proper and automatic garbage collection is a challenging and tedious task for developing countries. This paper proposes a deep learning-based intelligent garbage detection system using an Unmanned Aerial Vehicle (UAV). The main aim of this paper is to provide a low-cost, accurate and easy-to-use solution for handling the garbage effectively. It also helps municipal corporations to detect the garbage areas in remote locations automatically. This automation was derived using two Convolutional Neural Network (CNN) models and images of solid waste were captured by the drone. Both models were trained on the collected image dataset at different learning rates, optimizers and epochs. This research uses symmetry during the sampling of garbage images. Homogeneity regarding resizing of images is generated due to the application of symmetry to extract their characteristics. The performance of two CNN models was evaluated with the state-of-the-art models using different performance evaluation metrics such as precision, recall, F1-score, and accuracy. The CNN1 model achieved better performance for automatic solid waste detection with 94% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.