Abstract
Advertising is the most crucial part of all social networking sites. The phenomenal rise of social media has resulted in a general increase in the availability of customer tastes and preferences, which is a positive development. This information may be used to improve the service that is offered to users as well as target advertisements for customers who already utilize the service. It is essential while delivering relevant advertisements to consumers, to take into account the geographic location of the consumers. Customers will be ecstatic if the offerings displayed to them are merely available in their immediate vicinity. As the user’s requirements will vary from place to place, location-based services are necessary for gathering this essential data. To get users to stop thinking about where they are and instead focus on an ad, location-based advertising (LBA) uses their mobile device’s GPS to pinpoint nearby businesses and provide useful information. Due to the increased two-way communication between the marketer and the user, mobile consumers’ privacy concerns and personalization issues are becoming more of a barrier. In this research, we developed a collaborative filtering-based hybrid CNN-LSTM model for recommending geographically relevant online services using deep neural networks. The proposed hybrid model is made using two neural networks, i.e., CNN and LSTM. Geographical information systems (GIS) are used to acquire initial location data to collect precise locational details. The proposed LBA for GIS is built in a Python simulation environment for evaluation. Hybrid CNN-LSTM recommendation performance beats existing location-aware service recommender systems in large simulations based on the WS dream dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.