Abstract
Endovascular surgery is a high-risk operation with limited vision and intractable guidewires. At present, endovascular surgery robot (ESR) systems based on force feedback liberates surgeons' operation skills, but it lacks the ability to combine force perception with vision. In this study, a deep learning-based guidewire-compliant control method (GCCM) is proposed, which guides the robot to avoid surgical risks and improve the efficiency of guidewire operation. First, a deep learning-based model called GCCM-net is built to identify whether the guidewire tip collides with the vascular wall in real time. The experimental results in a vascular phantom show that the best accuracy of GCCM-net is 94.86 ± 0.31%. Second, a real-time operational risk classification method named GCCM-strategy is proposed. When the surgical risks occur, the GCCM-strategy uses the result of GCCM-net as damping and decreases the robot's running speed through virtual resistance. Compared with force sensors, the robot with GCCM-strategy can alleviate the problem of force position asynchrony caused by the long and soft guidewires in real-time. Experiments run by five guidewire operators show that the GCCM-strategy can reduce the average operating force by 44.0% and shorten the average operating time by 24.6%; therefore the combination of vision and force based on deep learning plays a positive role in improving the operation efficiency in ESR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.