Abstract

Cancer survival time prediction using Deep Learning (DL) has been an emerging area of research. However, non-availability of large-sized annotated medical imaging databases affects the training performance of DL models leading to their arguable usage in many clinical applications. In this research work, a neural network model is customized for small sample space to avoid data over-fitting for DL training. A set of prognostic radiomic features is selected through an iterative process using average of multiple dropouts which results in back-propagated gradients with low variance, thus increasing the network learning capability, reliable feature selection and better training over a small database. The proposed classifier is further compared with erasing feature selection method proposed in the literature for improved network training and with other well-known classifiers on small sample size. Achieved results which were statistically validated show efficient and improved classification of cancer survival time into three intervals of 6 months, between 6 months up to 2 years, and above 2 years; and has the potential to aid health care professionals in lung tumor evaluation for timely treatment and patient care.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call