Abstract
Limitations in the current capability of monitoring PM2.5 adversely impact air quality management and health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring networks are established to measure the PM2.5 concentrations in highly populated regions and protected areas such as national parks, yet large gaps exist in spatial coverage. Satellite-derived aerosol optical properties serve to complement the missing spatial information of ground-based monitoring networks. However, satellite remote sensing AODs are hampered under cloudy/hazy conditions or during nighttime. Here we strive to overcome the long-standing restriction that surface PM2.5 cannot be obtained with satellite remote sensing under cloudy/hazy conditions or during nighttime. In this work, we introduce a deep spatiotemporal neural network (ST-NN) and demonstrate that it can artfully fill these observational gaps. We quantified the quantitative impact of input variables on the results using sensitivity and visual analysis of the model. This technique provides ground-level PM2.5 concentrations with a high spatial resolution (0.01°) and 24-h temporal coverage, hour-by-hour, complete coverage. In central and eastern China, the 10-fold cross-validation results show that R2 is between 0.8 and 0.9, and RMSE is between 6 and 26 (µg m−3). The relative error varies in different concentration ranges and is generally less than 20%. Better constrained spatiotemporal distributions of PM2.5 concentrations will contribute to improving health effects studies, atmospheric emission estimates, and air quality predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.