Abstract
Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the performance of existing process discovery algorithms can be affected when there are missing activity labels in event logs. In this paper, we assume that the control-flow information in event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction model, which takes both the prefix and suffix sequences of the events with missing activity labels as input to predict missing activity labels. Additional attributes of event logs are also utilized to improve the performance. Our evaluation of several publicly available datasets shows that the proposed method performed consistently better than existing methods in terms of repairing missing activity labels in event logs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.