Abstract
Chronic kidney disease (CKD) is a gradual decline in renal function that can lead to kidney damage or failure. As the disease progresses, it becomes harder to diagnose. Using routine doctor consultation data to evaluate various stages of CKD could aid in early detection and prompt intervention. To this end, researchers propose a strategy for categorizing CKD using an optimization technique inspired by the learning process. Artificial intelligence has the potential to make many things in the world seem possible, even causing surprise with its capabilities. Some doctors are looking forward to advancements in technology that can scan a patient’s body and analyse their diseases. In this regard, advanced machine learning algorithms have been developed to detect the presence of kidney disease. This research presents a novel deep learning model, which combines a fuzzy deep neural network, for the recognition and prediction of kidney disease. The results show that the proposed model has an accuracy of 99.23%, which is better than existing methods. Furthermore, the accuracy of detecting chronic disease can be confirmed without doctor involvement as future work. Compared to existing information mining classifications, the proposed approach shows improved accuracy in classification, precision, F-measure, and sensitivity metrics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.