Abstract

Software Defined Networking (SDN) provides us with the capability of collecting network traffic information and managing networks proactively. Therefore, SDN facilitates the promotion of more robust and secure networks. Recently, several Machine Learning (ML)/Deep Learning (DL) intrusion detection approaches have been proposed to secure SDN networks. Currently, most of the proposed ML/DL intrusion detection approaches are based on supervised learning approach that required labelled and well-balanced datasets for training. However, this is time intensive and require significant human expertise to curate these datasets. These approaches cannot deal well with imbalanced and unlabeled datasets. In this paper, we propose a hybrid unsupervised DL approach using the stack autoencoder and One-class Support Vector Machine (SAE-1SVM) for Distributed Denial of Service (DDoS) attack detection. The experimental results show that the proposed algorithm can achieve an average accuracy of 99.35 % with a small set of flow features. The SAE-1SVM shows that it can reduce the processing time significantly while maintaining a high detection rate. In summary, the SAE-1SVM can work well with imbalanced and unlabeled datasets and yield a high detection accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.