Abstract

Aiming at the problem of image classification with insignificant morphological structural features, strong target correlation, and low signal-to-noise ratio, combined with prior feature knowledge embedding, a deep learning method based on ResNet and Radial Basis Probabilistic Neural Network (RBPNN) is proposed model. Taking ResNet50 as a visual modeling network, it uses feature pyramid and self-attention mechanism to extract appearance and semantic features of images at multiple scales, and associate and enhance local and global features. Taking into account the diversity of category features, channel cosine similarity attention and dynamic C-means clustering algorithms are used to select representative sample features in different category of sample subsets to implicitly express prior category feature knowledge, and use them as the kernel centers of radial basis probability neurons (RBPN) to realize the embedding of diverse prior feature knowledge. In the RBPNN pattern aggregation layer, the outputs of RBPN are selectively summed according to the category of the kernel center, that is, the subcategory features are combined into category features, and finally the image classification is implemented based on Softmax. The functional module of the proposed method is designed specifically for image characteristics, which can highlight the significance of local and structural features of the image, form a non-convex decision-making area, and reduce the requirements for the completeness of the sample set. Applying the proposed method to medical image classification, experiments were conducted based on the brain tumor MRI image classification public dataset and the actual cardiac ultrasound image dataset, and the accuracy rate reached 85.82% and 83.92% respectively. Compared with the three mainstream image classification models, the performance indicators of this method have been significantly improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.