Abstract

Recently, fusing a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) of different satellites has become an effective way to improve the resolution of an HSI. However, due to different imaging satellites, different illumination, and adjacent imaging time, the LR-HSI and HR-MSI may not satisfy the observation models established by existing works, and the LR-HSI and HR-MSI are hard to be registered. To solve the above problems, we establish new observation models for LR-HSIs and HR-MSIs from different satellites, then a deep-learning-based framework is proposed to solve the key steps in multi-satellite HSI fusion, including image registration, blur kernel learning, and image fusion. Specifically, we first construct a convolutional neural network (CNN), called RegNet, to produce pixel-wise offsets between LR-HSI and HR-MSI, which are utilized to register the LR-HSI. Next, according to the new observation models, a tiny network, called BKLNet, is built to learn the spectral and spatial blur kernels, where the BKLNet and RegNet can be trained jointly. In the fusion part, we further train a FusNet by downsampling the registered data with the learned spatial blur kernel. Extensive experiments demonstrate the superiority of the proposed framework in HSI registration and fusion accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.