Abstract
An image is compressed or stretched during the multidevice displaying, which will have a very big impact on perception quality. In order to solve this problem, a variety of image retargeting methods have been proposed for the retargeting process. However, how to evaluate the results of different image retargeting is a very critical issue. In various application systems, the subjective evaluation method cannot be applied on a large scale. So we put this problem in the accurate objective-quality evaluation. Currently, most of the image retargeting quality assessment algorithms use simple regression methods as the last step to obtain the evaluation result, which are not corresponding with the perception simulation in the human vision system (HVS). In this paper, a deep quality evaluator for image retargeting based on the segmented stacked AutoEnCoder (SAE) is proposed. Through the help of regularization, the designed deep learning framework can solve the overfitting problem. The main contributions in this framework are to simulate the perception of retargeted images in HVS. Especially, it trains two separated SAE models based on geometrical shape and content matching. Then, the weighting schemes can be used to combine the obtained scores from two models. Experimental results in three well-known databases show that our method can achieve better performance than traditional methods in evaluating different image retargeting results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.