Abstract

Beta-turn prediction is useful in protein function studies and experimental design. Although recent approaches using machine-learning techniques such as support vector machine (SVM), neural networks, and K nearest neighbor have achieved good results for beta-turn prediction, there is still significant room for improvement. As previous predictors utilized features in a sliding window of 4-20 residues to capture interactions among sequentially neighboring residues, such feature engineering may result in incomplete or biased features and neglect interactions among long-range residues. Deep neural networks provide a new opportunity to address these issues. Here, we proposed a deep dense inception network (DeepDIN) for beta-turn prediction, which takes advantage of the state-of-the-art deep neural network design of dense networks and inception networks. A test on a recent BT6376 benchmark data set shows that DeepDIN outperformed the previous best tool BetaTPred3 significantly in both the overall prediction accuracy and the nine-type beta-turn classification accuracy. A tool, called MUFold-BetaTurn, was developed, which is the first beta-turn prediction tool utilizing deep neural networks. The tool can be downloaded at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldBetaTurn/download.html.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.