Abstract

The Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.

Highlights

  • Modeling the encoding of the external visual stimulus along the visual pathway has been the topic of a multitude of studies given that humans arguably rely on vision more than any other sense [1,2,3]

  • Data was recorded in response to three visual stimulation patterns: single-pixel stimulation (Subjects S1 to S6, n = 86 neurons), checkerboard stimulation (Subjects S7 to S12, n = 64 neurons) and geometrical shapes stimulation (Subjects S7, S8 and S9, n = 29 neurons that are subset of the 64 neurons of checkerboard stimulation)

  • The model was used to predict rat Lateral Geniculate Nucleus (LGN) neural firing in response to different visual stimulation patterns achieving a mean correlation of 0.7 between the actual recorded and predicted firing rates

Read more

Summary

Introduction

Modeling the encoding of the external visual stimulus along the visual pathway has been the topic of a multitude of studies given that humans arguably rely on vision more than any other sense [1,2,3]. (2021) 8:11 studied compared to other visual pathway sites despite its crucial role as the major gateway of visual information to higher processing levels along the visual pathway [13]. In terms of firing patterns, LGN neurons have been demonstrated to exhibit both transient and sustained responses post-visual stimulus presentation [16, 17]. These findings suggest a more elaborate function of the LGN as opposed to acting as simple relay cells

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call