Abstract
Several economists and social scientists have held a longstanding fascination with the practice of stock market prediction. As the stock market is essentially uncontrollable chaos, many experts believe that trying to predict it is futile. Due to the complexity of the numerous factors, accurate stock price predictions are notoriously difficult to achieve. While the market behaves more like a scale than a voting machine over the long run, its behavior may be predicted with some certainty. Information from Twitter is used into the algorithm. In this proposed method, a convolutional extreme learning machine model with kernel support was introduced (CKELM). To improve feature extraction and data classification, the CKELM model builds on the KELM’s hidden layer by adding convolutional and subsampling layers. The convolutional layer and the subsampling layer do not employ the gradient technique to fine-tune their parameters because some designs worked well with random weights. When compared to popular models like CNN and KELM, The proposed model fares quite well, with an accuracy of around 98.3 percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.