Abstract
In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.