Abstract
<abstract><p>We presented a novel deep generative clustering model called Variational Deep Embedding based on Pairwise constraints and the Von Mises-Fisher mixture model (VDEPV). VDEPV consists of fully connected neural networks capable of learning latent representations from raw data and accurately predicting cluster assignments. Under the assumption of a genuinely non-informative prior, VDEPV adopted a von Mises-Fisher mixture model to depict the hyperspherical interpretation of the data. We defined and established pairwise constraints by employing a random sample mining strategy and applying data augmentation techniques. These constraints enhanced the compactness of intra-cluster samples in the spherical embedding space while improving inter-cluster samples' separability. By minimizing Kullback-Leibler divergence, we formulated a clustering loss function based on pairwise constraints, which regularized the joint probability distribution of latent variables and cluster labels. Comparative experiments with other deep clustering methods demonstrated the excellent performance of VDEPV.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.