Abstract
BackgroundCoding of underlying causes of death from death certificates is a process that is nowadays undertaken mostly by humans with potential assistance from expert systems, such as the Iris software. It is, consequently, an expensive process that can, in addition, suffer from geospatial discrepancies, thus severely impairing the comparability of death statistics at the international level. The recent advances in artificial intelligence, specifically the rise of deep learning methods, has enabled computers to make efficient decisions on a number of complex problems that were typically considered out of reach without human assistance; they require a considerable amount of data to learn from, which is typically their main limiting factor. However, the CépiDc (Centre d’épidémiologie sur les causes médicales de Décès) stores an exhaustive database of death certificates at the French national scale, amounting to several millions of training examples available for the machine learning practitioner.ObjectiveThis article investigates the application of deep neural network methods to coding underlying causes of death.MethodsThe investigated dataset was based on data contained from every French death certificate from 2000 to 2015, containing information such as the subject’s age and gender, as well as the chain of events leading to his or her death, for a total of around 8 million observations. The task of automatically coding the subject’s underlying cause of death was then formulated as a predictive modelling problem. A deep neural network−based model was then designed and fit to the dataset. Its error rate was then assessed on an exterior test dataset and compared to the current state-of-the-art (ie, the Iris software). Statistical significance of the proposed approach’s superiority was assessed via bootstrap.ResultsThe proposed approach resulted in a test accuracy of 97.8% (95% CI 97.7-97.9), which constitutes a significant improvement over the current state-of-the-art and its accuracy of 74.5% (95% CI 74.0-75.0) assessed on the same test example. Such an improvement opens up a whole field of new applications, from nosologist-level batch-automated coding to international and temporal harmonization of cause of death statistics. A typical example of such an application is demonstrated by recoding French overdose-related deaths from 2000 to 2010.ConclusionsThis article shows that deep artificial neural networks are perfectly suited to the analysis of electronic health records and can learn a complex set of medical rules directly from voluminous datasets, without any explicit prior knowledge. Although not entirely free from mistakes, the derived algorithm constitutes a powerful decision-making tool that is able to handle structured medical data with an unprecedented performance. We strongly believe that the methods developed in this article are highly reusable in a variety of settings related to epidemiology, biostatistics, and the medical sciences in general.
Highlights
The availability of up-to-date, reliable mortality statistics is a matter of significant importance in public health−related disciplines
This article shows that deep artificial neural networks are perfectly suited to the analysis of electronic health records and can learn a complex set of medical rules directly from voluminous datasets, without any explicit prior knowledge
As underlying causes of death are the main information used in the tabulation of mortality statistics, extracting them from death certificates is of paramount importance
Summary
The availability of up-to-date, reliable mortality statistics is a matter of significant importance in public health−related disciplines. The monitoring of leading causes of deaths is an important tool for public health practitioners and has a considerable impact on health policy−related decision-making processes [1,2,3,4,5,6]. Coding of underlying causes of death from death certificates is a process that is nowadays undertaken mostly by humans with potential assistance from expert systems, such as the Iris software. It is, an expensive process that can, in addition, suffer from geospatial discrepancies, severely impairing the comparability of death statistics at the international level. The CépiDc (Centre d’épidémiologie sur les causes médicales de Décès) stores an exhaustive database of death certificates at the French national scale, amounting to several millions of training examples available for the machine learning practitioner
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.