Abstract

AbstractDuring slime mold development, cells acquire the capacity to rapidly recapitulate morphogenesis in roughly a tenth the original time. When developing cells are disaggregated and refed, they completely loss this capacity in a rapid and synchronous step referred to as the “erasure event.” The erasure event sets in motion a program of dedifferentiation during which developmentally acquired functions are lost at different times. In this report, we describe the phenotype of HI4, which is a mutant partially defective in the dedifferentiation program but normal in all aspects of growth, morphogenesis, and rapid recapitulation. HI4 cells progress through the erasure event, losing in a relatively normal fashion (I) the capacity to rapidly recapitulate later stages of morphogenesis, (2) the capacity to release a cAMP signal, and (3) the capacity to respond chemotactically to a cAMP signal. However, erased HI4 cells abnormally retain the capacity to rapidly reaggregate, even though they have lost chemotactic functions. Erased HI4 cells also abnormally retain EDTA‐resistant cohesion (contact sites A) and the surface glycoprotein gp80. It appears that erased HI4 cells rapidly reaggregate owing to random collisions followed by tight cell cohesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.