Abstract

Pig pregnancy succeeds thanks to a well-coordinated system ruling both maternal immune activation and embryonic antigen tolerance. In physiological pregnancies, the maternal immune system should tolerate the presence of hemi-allogeneic conceptuses from the pre-implantation phase to term, while maintaining maternal defence against pathogens. Allogeneic pregnancies, as after embryo transfer (ET), depict high embryo mortality during the attachment phase, calling for studies of the dynamic modifications in immune processes occurring at the maternal-foetal interface, for instance, of interferon (IFN)-stimulated genes (ISGs). These ISGs are generally activated by IFN secreted by the conceptus during the process of maternal recognition of pregnancy (MRP) and responsible for recruiting immune cells to the site of embryo attachment, thus facilitating cell-antigen presentation and angiogenesis. We performed RNA-Seq analysis in peri-implantation (days 18 and 24) endometrial samples retrieved from artificially inseminated sows (hemi-allogeneic embryos (HAL) group) or sows subjected to ET (allogeneic embryos (AL) group) to monitor alterations of gene expression that could be jeopardising early pregnancy. Our results showed that endometrial gene expression patterns related to immune responses differed between hemi- or allogeneic embryo presence, with allogeneic embryos apparently inducing conspicuous modifications of immune-related genes and pathways. A decreased expression (P < 0.05; FC < −2) of several interferon ISGs, such as CXCL8, CXCL10, IRF1, IRF9, STAT1, and B2M, among others was detected in the endometrium of sows carrying allogeneic embryos on day 24 of pregnancy. This severe downregulation of ISGs in allogeneic pregnancies could represent a failure of ET-embryos to signal IFN to the endometrium to warrant the development of adequate immunotolerance mechanisms to facilitate embryo development, thus contributing to elevated embryo death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.