Abstract

The inflammatory process plays a crucial role in the onset and progression of several lung pathologies, including cystic fibrosis (CF), and the involvement of NF-κB is widely recognized. The specific inhibition of NF-κB by decoy oligonucleotides delivered within the lung may be beneficial, although rationally designed systems are needed to optimize their pharmacological response. Prompted by this need, we have developed and tested in vivo an inhalable dry powder for the prolonged delivery of a decoy oligodeoxynucleotide to NF-κB (dec-ODN), consisting of large porous particles (LPPs) based on poly(lactic-co-glycolic) acid. First, LPPs containing dec-ODN (dec-ODN LPPs) were engineered to meet the aerodynamic criteria crucial for pulmonary delivery, to gain an effective loading of dec-ODN, to sustain its release, and to preserve its structural integrity in lung lining fluids. We then investigated the effects of dec-ODN LPPs in a rat model of lung inflammation induced by the intratracheal aerosolization of LPS from Pseudomonas aeruginosa. The results show that a single intratracheal insufflation of dec-ODN LPPs reduced the bronchoalveolar neutrophil infiltration induced by LPS for up to 72 hours, whereas naked dec-ODN was able to inhibit it only at 6 hours. The persistent inhibition of neutrophil infiltrate was associated with reduced NF-κB/DNA binding activity, as well as reduced IL-6, IL-8, and mucin-2 mRNA expression in lung homogenates. We consider it noteworthy that the developed LPPs, preventing the accumulation of neutrophils and NF-κB-related gene expression, may provide a new therapeutic option for the local treatment of inflammation associated with lung disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.