Abstract

Shadow removal, which aims to restore the illumination in shadow regions, is challenging due to the diversity of shadows in terms of location, intensity, shape, and size. Different from most multi-task methods, which design elaborate multi-branch or multi-stage structures for better shadow removal, we introduce feature decomposition to learn better feature representations. Specifically, we propose a single-stage and decoupled multi-task network (DMTN) to explicitly learn the decomposed features for shadow removal, shadow matte estimation, and shadow image reconstruction. First, we propose several coarse-to-fine semi-convolution (SMC) modules to capture features sufficient for joint learning of these three tasks. Second, we design a theoretically supported feature decoupling layer to explicitly decouple the learned features into shadow image features and shadow matte features via weight reassignment. Last, these features are converted to a target shadow-free image, affiliated shadow matte, and shadow image, supervised by multi-task joint loss functions. With multi-task collaboration, DMTN effectively recovers the illumination in shadow areas while ensuring the fidelity of non-shadow areas. Experimental results show that DMTN competes favorably with state-of-the-art multi-branch/multi-stage shadow removal methods, while maintaining the simplicity of single-stage methods. We have released our code to encourage future exploration in powerful feature representation for shadow removal <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/nachifur/DMTN</uri>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.