Abstract

Abdominal aortic aneurysm (AAA) is a localized dilatation of the aortic wall. The lack of an accurate AAA rupture risk index remains an important problem in the clinical management of the disease. To accurately estimate AAA rupture risk, detailed information on patient-specific wall stress distribution and aortic wall tissue yield stress is required. A complete fluid structure interaction (FSI) study is currently impractical and thus of limited clinical value. On the other hand, isolated static structural stress analysis based on a uniform wall loading is a widely used approach for AAA rupture risk estimation that, however, neglects the flow-induced wall stress variation. The aim of this study was to assess the merit of a decoupled fluid structure analysis of AAA wall stress. Anatomically correct, patient specific AAA wall models were created by 3D reconstruction of computed tomography images. Flow simulations were carried out with inflow and outflow boundary conditions obtained from patient extracted data. Static structural stress analysis was performed applying both a uniform pressure wall loading and a flow induced non-uniform pressure distribution obtained during early systolic deceleration. For the structural analysis, a hyperelastic arterial wall model and an elastic intraluminal thrombus model were assumed. The results of this study demonstrate that although the isolated static structural stress analysis approach captures the gross features of the stress distribution it underestimates the magnitude of the peak wall stress by as much as 12.5% compared to the proposed decoupled fluid structure approach. Furthermore, the decoupled approach provides potentially useful information on the nature of the aneurysmal sac flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.