Abstract

In order to make a good compromise of cost and safety with small data in the early structural design stage, a practical decoupled credibility-based design optimization method is developed in the presence of fuzzy uncertainty. In the proposed approach, failure credibility is constructed as optimization constraints estimated by fuzzy advanced first-order second-moment method. By approximating the fuzzy credibility constraint by the adaptive Kriging surrogate model, a fuzzy credibility-based design is decoupled to a common deterministic optimization so that various existing optimization algorithms can be easily applied. Compared to the traditional double-loop approach, the newly proposed method is more efficient and strongly practical for complicated engineering problems. Design results of three structural engineering examples also show advantages in accuracy and computation speed of the proposed method over the traditional double-loop approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.