Abstract

Over the past few years, there has been an increased focus on offshore pipeline safety due to the development of offshore oil and gas resources. Both onshore and offshore pipelines may face significant geological hazards resulting from active faults. Pre-excavated soil can be used as backfill for trenches to prevent major pipeline deformations. Since these backfill materials have been heavily remolded, they are softer than the native soil. Therefore, the difference in shear strength between the backfill and native ground may have an effect on the interaction between the pipeline and the backfill. In this paper, the pipeline–backfill–trench interaction is investigated using a hybrid beam–spring model. The P-Y curves obtained from CEL analysis are incorporated into a 3D beam–spring model to analyze the pipeline’s response to lateral strike-slip faults. Additionally, the nonlinearity of pipeline materials is considered to study pipeline failure modes under strike-slip fault movements. A series of parametric studies were conducted to explore the effects of fault intersection angle, pipe diameter, buried depth of the pipe, and soil conditions on the failure modes of buckling pipelines. The developed method can be used to analyze and assess pipeline–backfill–trench interaction when subjected to strike-slip fault displacements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.