Abstract
In this work, a decoupled and iterative finite element method is developed and analyzed for steady-state generalized Boussinesq equations, in which both the viscosity and thermal conductivity depend on the temperature. By utilizing the solutions obtained in the previous iteration step, the coupled system is reduced to Navier-Stokes equations with temperature-dependent viscosity and a linearized convection-diffusion equation, which can be solved in parallel. The well-posedness and stability of the scheme are proved. Finite element errors and iterative errors are analyzed for the cases of both temperature-dependent and temperature-independent thermal conductivity. Numerical examples are provided to demonstrate the convergence, accuracy and applicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.