Abstract

Evolutionary multi-objective optimization aims at obtaining a set of Pareto-optimal solutions among the multiple conflicting objectives. However, the ability of multi-objective evolutionary algorithm to converge towards the Pareto front and maintain population diversity often seriously decrease with the number of objectives increasing. To address this problem, we propose a decomposition-rotation dominance based evolutionary algorithm with reference point adaption for many-objective optimization, termed DREA. In the DREA, a dominance relation based on decomposition and rotation (DR-dominance) is proposed for increasing selection pressure and maintaining diversity simultaneously, which is achieved by decomposing the objective space and rotating the coordinate system. At the same time, a reference point adaption strategy is designed, which can adapt well to different types of Pareto fronts. In addition, an effective mating selection strategy is proposed for enhancing the probability of parents with good convergence and diversity combination. The experimental results on several commonly used benchmark test problems with objective numbers varying from 5 to 20 and two real-world engineering applications have demonstrated that the proposed DREA is highly competitive in solving many-objective optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.