Abstract
AbstractAn algebra A is homogeneous if the automorphism group of A acts transitively on the one dimensional subspaces of A. Suppose A is a homogeneous algebra over an infinite field k. Let La denote left multiplication by any nonzero element a ∈ A. Several results are proved concerning the structure of A in terms of La. In particular, it is shown that A decomposes as the direct sum A = ker La Im La. These results are then successfully applied to the problem of classifying the infinite homogeneous algebras of small dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.