Abstract

Abstract ‘A Decomposition That Does Not Shrink’ gives a nontrivial example of a decomposition of the 3-sphere such that the corresponding quotient space is not homeomorphic to the 3-sphere. The decomposition in question is called the Bing-2 decomposition. Similar to the Bing decomposition from the previous chapter, it consists of the connected components of the intersection of an infinite sequence of nested solid tori. However, unlike the Bing decomposition, the Bing-2 decomposition does not shrink. This indicates the subtlety of the question of which decompositions shrink. The question of when certain decompositions of the 3-sphere shrink is central to the proof of the disc embedding theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.