Abstract

AbstractThis paper presents a decomposition scheme to find near‐optimal solutions to a cell transmission model‐based system optimal dynamic traffic assignment problem with multiple origin‐destination pairs. A linear and convex formulation is used to define the problem characteristics. The decomposition is designed based on the Dantzig–Wolfe technique that splits the set of decision variables into subsets through the construction of a master problem and subproblems. Each subproblem includes only a single origin‐destination pair with significantly less computational burden compared to the original problem. The master problem represents the coordination between subproblems through the design of interactive flows between the pairs. The proposed methodology is implemented in two case study networks of 20 and 40 intersections with up to 25 origin‐destination pairs. The numerical results show that the decomposition scheme converges to the optimal solution, within 2.0% gap, in substantially less time compared to a benchmark solution, which confirms the computational efficiency of the proposed algorithm. Various network performance measures have been assessed based on different traffic state scenarios to draw managerial insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.