Abstract

In many cases, the numerical resolution of Maxwell's equations is very expensive in terms of computational cost. The Darwin model, an approximation of Maxwell's equations obtained by neglecting the divergence free part of the displacement current, can be used to compute the solution more economically. However, this model requires the electric field to be decomposed into two parts for which no straightforward boundary conditions can be derived. In this paper, we consider the case of a computational domain which is not simply connected. With the help of a functional framework, a decomposition of the fields is derived. It is then used to characterize mathematically the solutions of the Darwin model on such a domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.