Abstract

In this paper, we shall be concerned with the solution of constrained convex minimization problems. The constrained convex minimization problems are proposed to be transformable into a convex-additively decomposed and almost separable form, e.g. by decomposition of the objective functional and the restrictions. Unconstrained dual problems are generated by using Fenchel-Rockafellar duality. This decomposition-dualization concept has the advantage that the conjugate functionals occuring in the derived dual problem are easily computable. Moreover, the minimum point of the primal constrained convex minimization problem can be obtained from any maximum point of the corresponding dual unconstrained concave problem via explicit return-formulas. In quadratic programming the decomposition-dualization approach considered here becomes applicable if the quadratic part of the objective functional is generated byH-matrices. Numerical tests for solving obstacle problems in ?1 discretized by using piecewise quadratic finite elements and in ?2 by using the five-point difference approximation are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.