Abstract

Recently, it is difficult to simulate, analyze and control a real knowledge-based system using the correspondence Petri net (PN) when there exist many current states. To overcome the state explosion problem of PN, an efficient decomposition algorithm is presented to divide a large-scale PN into a series of corresponding sub-PNs by keeping the consistency of dynamic properties. In this novel decomposition approach, an index function is defined to judge the subnet needs to be decomposed or not. Furthermore, an exhaustive analysis on the consistency of related dynamic properties is also discussed between the original PN and the corresponding sub-PNs. Finally, a case study is carried out to illustrate the feasibility and validity of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.