Abstract

Large-scale quantum computers threaten the security of today's public-key cryptography. The McEliece cryptosystem is one of the most promising candidates for post-quantum cryptography. However, the McEliece system has the drawback of large key sizes for the public key. Similar to other public-key cryptosystems, the McEliece system has a comparably high computational complexity. Embedded devices often lack the required computational resources to compute those systems with sufficiently low latency. Hence, those systems require hardware acceleration. Lately, a generalized concatenated code construction was proposed together with a restrictive channel model, which allows for much smaller public keys for comparable security levels. In this work, we propose a hardware decoder suitable for a McEliece system based on these generalized concatenated codes. The results show that those systems are suitable for resource-constrained embedded devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call