Abstract

The current literature of evolutionary many-objective optimization is merely focused on the scalability to the number of objectives, while little work has considered the scalability to the number of decision variables. Nevertheless, many real-world problems can involve both many objectives and large-scale decision variables. To tackle such large-scale many-objective optimization problems (MaOPs), this paper proposes a specially tailored evolutionary algorithm based on a decision variable clustering method. To begin with, the decision variable clustering method divides the decision variables into two types: 1) convergence-related variables and 2) diversity-related variables. Afterward, to optimize the two types of decision variables, a convergence optimization strategy and a diversity optimization strategy are adopted. In addition, a fast nondominated sorting approach is developed to further improve the computational efficiency of the proposed algorithm. To assess the performance of the proposed algorithm, empirical experiments have been conducted on a variety of large-scale MaOPs with up to ten objectives and 5000 decision variables. Our experimental results demonstrate that the proposed algorithm has significant advantages over several state-of-the-art evolutionary algorithms in terms of the scalability to decision variables on MaOPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.