Abstract
This research is on the use of a decision tree approach for predicting students’ academic performance. Education is the platform on which a society improves the quality of its citizens. To improve on the quality of education, there is a need to be able to predict academic performance of the students. The IBM Statistical Package for Social Studies (SPSS) is used to apply the Chi-Square Automatic Interaction Detection (CHAID) in producing the decision tree structure. Factors such as the financial status of the students, motivation to learn, gender were discovered to affect the performance of the students. 66.8% of the students were predicted to have passed while 33.2% were predicted to fail. It is observed that much larger percentage of the students were likely to pass and there is also a higher likely of male students passing than female students.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Education and Management Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.