Abstract
Seeding rate in hard red spring wheat (HRSW; Triticum aestivum L.) production impacts input cost and grain yield. Predicting the optimal seeding rate (OSR) for HRSW cultivars can eliminate the need for costly seeding rate research and growers using OSRs can maximize yield and seeding efficiency. Data were compiled from seeding rate studies conducted in 32 environments in the Northern Plains United States to determine the OSR of HRSW cultivars grown in diverse environments. Twelve cultivars with diverse genetic and phenotypic characteristics were evaluated at five seeding rates in 2013–2015, and nine cultivars were evaluated in 2017–2018. OSR varied among cultivar within environments. Cultivar x environment interactions were explored with the objective of developing a decision support system (DSS) to aid growers in determining the OSR for the cultivar they select, and for the environment in which it is sown. A 10-fold repeated cross-validation of the seeding rate data was used to fit 10 decision tree models and the most robust model was selected based on minimizing the value for model variance. The final decision tree model for predicting OSR of HRSW cultivars in diverse environments was considered the most reliable as bias was minimized by pruning methods, and model variance was acceptable for OSR predictions (RMSE = 1.24). Findings from this model were used to develop the grower DSS for determining OSR dependent on cultivar straw strength (as a measure of lodging resistance), tillering capacity, and yield of the environment. Recommendations for OSR ranged from 3.1 to 4.5 million seeds ha–1. Growers can benefit from using this DSS by sowing at OSR relative to their average yields; especially when seeding new HRSW cultivars.
Highlights
Genetic improvement through continued breeding efforts leads to the development of new hard red spring wheat (HRSW) cultivars that typically provide a yield advantage over cultivars released in prior years (Austin et al, 1980)
With the continual release of new cultivars, growers may benefit from knowing optimal seeding rates (OSR) that are specific to cultivar and environment type, as this will aid growers in maximizing seeding efficiency and improve wheat yield potential
Initial models were prone to overfitting to specific latitude and longitude, so these variables were excluded from analyses
Summary
Genetic improvement through continued breeding efforts leads to the development of new hard red spring wheat (HRSW) cultivars that typically provide a yield advantage over cultivars released in prior years (Austin et al, 1980). Growers have shown preference for newer cultivars, primarily driven by the opportunity for increased grain yield potential and protein content (Dahl et al, 2004). This prompts public and private seed organizations to continuously release new HRSW cultivars, resulting in the subsequent “retirement” of older cultivars. When these new cultivars are first released, they are not accompanied by a seeding rate recommendation. With the continual release of new cultivars (and subsequent discontinuation of older cultivars), growers may benefit from knowing OSR that are specific to cultivar and environment type, as this will aid growers in maximizing seeding efficiency and improve wheat yield potential
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.