Abstract

The presence of snow and ice on runway surfaces reduces the available tire-pavement friction needed for retardation and directional control and causes potential economic and safety threats for the aviation industry during the winter seasons. To activate appropriate safety procedures, pilots need accurate and timely information on the actual runway surface conditions. In this study, XGBoost is used to create a combined runway assessment system, which includes a classification model to identify slippery conditions and a regression model to predict the level of slipperiness. The models are trained on weather data and runway reports. The runway surface conditions are represented by the tire-pavement friction coefficient, which is estimated from flight sensor data from landing aircrafts. The XGBoost models are combined with SHAP approximations to provide a reliable decision support system for airport operators, which can contribute to safer and more economic operations of airport runways. To evaluate the performance of the prediction models, they are compared to several state-of-the-art runway assessment methods. The XGBoost models identify slippery runway conditions with a ROC AUC of 0.95, predict the friction coefficient with a MAE of 0.0254, and outperforms all the previous methods. The results show the strong abilities of machine learning methods to model complex, physical phenomena with a good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.