Abstract

SummaryThis paper presents a receding horizon optimal controller with guaranteed stability for multirobot formation, taking into account collision and obstacle avoidance. The proposed scheme is based on synchronous decentralized strategy wherein all the vehicles that are connected via a packed‐delaying network solve a finite horizon–constrained optimal control problem to obtain their own control action at each sampling instant. First, each robot is modeled by a single integrator dynamics; then, by defining a control law for each robot and considering the effect of communication delay, the closed‐loop dynamics is described as a delay differential equation with tunable parameters. Afterwards, a novel finite‐horizon optimal control setup is established to obtain these adjustable gains such that a desirable formation is achieved. The efficiency and applicability of the suggested scheme are demonstrated by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call