Abstract

Background: Bone grafts are used in approximately one half of all musculoskeletal surgeries. Autograft bone is the historic gold standard but is limited in supply and its harvest imparts significant morbidity to the patient. Alternative sources of bone graft include allografts, synthetics and, less commonly, xenografts which are taken from animal species. Xenografts are available in unlimited supply from healthy animal donors with controlled biology, avoiding the risk of human disease transmission, and may satisfy current demand for bone graft products. Methods: In the current study, cancellous bone was harvested from porcine femurs and subjected to a novel decellularization protocol to derive a bone scaffold. Results: The scaffold was devoid of donor cellular material on histology and DNA sampling (p < 0.01). Microarchitectural properties important for osteoconductive potential were preserved after decellularization as shown by high resolution imaging modalities. Proteomics data demonstrated similar profiles when comparing the porcine bone scaffold against commercially available human demineralized bone matrix approved for clinical use. Conclusion: We are unaware of any porcine-derived bone graft products currently used in orthopaedic surgery practice. Results from the current study suggest that porcine-derived bone scaffolds warrant further consideration to serve as a potential bone graft substitute.

Highlights

  • A bone scaffold is a three dimensional matrix used to fill bone voids and support the body’s intrinsic regenerative potential [1]

  • A novel decellularization and chemical oxidation protocol developed in our laboratory has previously derived tendon, meniscus, and ligament scaffolds from both human and animal tissue [33,34,35,36,37]. Results from these studies showed that the decellularization technology can derive biocompatible and pathogen-free tissue scaffolds. We proposed that this protocol could be used to decellularize bone to derive scaffolds that could potentially serve as bone graft substitutes for clinical use

  • Donor porcine bone (Figure 1A) post-oxidation was devoid of adipose marrow contents and took on a bright white, uniform appearance

Read more

Summary

Introduction

A bone scaffold is a three dimensional matrix used to fill bone voids and support the body’s intrinsic regenerative potential [1]. DBM serves as an osteoconductive matrix with osteoinductive potential imparted by the retained growth factors from the donor [5]. Scaffolds derived from alternative sources of natural bone, such as xenograft bone (non-human), could afford the same osteoconductive benefits as DBM at a lower cost, avoid the risk of human disease transmission and be immediately available in relatively unlimited quantities from a larger pool of healthy donors with controlled biology [7]. Xenografts are available in unlimited supply from healthy animal donors with controlled biology, avoiding the risk of human disease transmission, and may satisfy current demand for bone graft products. Results from the current study suggest that porcine-derived bone scaffolds warrant further consideration to serve as a potential bone graft substitute

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.